[1] Zhang, Hai-Feng. “Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.” Chinese Physics B 27.1 (2018): 014205. DOI: 10.1088/1674-1056/27/1/014205
[2] Zhang, Hai-Feng. “The band structures of three-dimensional nonlinear plasma photonic crystals.” AIP Advances 8.1 (2018). DOI: 10.1063/1.5007900
[3] Zhang, Hai-Feng. “Three-dimensional function photonic crystals.” Physica B: Condensed Matter 525 (2017): 104-113. DOI: 10.1016/j.physb.2017.09.008
[4] Zhang, Hai-Feng. “Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence.” AIP Advances 7.7 (2017). DOI: 10.1063/1.4992139
[5] Zhang, Hai-Feng, Hao Zhang, and Yu Ma. “The features of three-dimensional photonic crystals with the space-depended dielectric.” Optik 172 (2018): 449-455. DOI: 10.1016/j.ijleo.2018.07.052
[6] Zhang, Hai-Feng. “The properties of three-dimensional plasma photonic crystals with Kerr nonlinear dielectric constituents.” Solid State Communications 282 (2018): 9-16. DOI: 10.1016/j.ssc.2018.07.007
[7] Zhang, Hai-Feng. “The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure.” Physica C: Superconductivity and its Applications 550 (2018): 65-73. DOI: 10.1016/j.physc.2018.04.007
[8] Zhang, Hao, et al. “Comment on “Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application”.” Progress In Electromagnetics Research Letters 78 (2018): 39-43. DOI: 10.2528/PIERL18052602
[9] Zhang, Hai Feng, and Hao Zhang. “The Dispersion Characteristics of the Three-Dimensional Function Photonic Crystals with Woodpile Lattices Composed of Plasma and Magnetized Plasma Elements.” Progress In Electromagnetics Research C 88 (2018): 163-178. DOI: 10.2528/PIERC18090302
[10] Zhang, Hai-Feng, et al. “A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators.” IEEE Photonics Journal 10.4 (2018): 1-10. DOI: 10.1109/JPHOT.2018.2854906
[11] Zhang, Hai-Feng, et al. “A polarization-insensitive broadband terahertz absorber with a multilayer structure.” Results in Physics 11 (2018): 1064-1074. DOI: 10.1016/j.rinp.2018.11.010
[12] Zhang, Hao, et al. “Band enhanced ultra-broadband terahertz absorber based on a high-impedance surface and cavity resonance.” Applied Optics 57.31 (2018): 9208-9214. DOI: 10.1364/AO.57.009208
[13] Zeng, Li, et al. “Comment on “Broadband ultrathin low-profile metamaterial microwave absorber”.” Applied Physics A 124 (2018): 1-5. DOI: 10.1007/s00339-018-2261-6
[14] Tian, Xing-Liang, et al. “Comment on “A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings”.” IEEE Journal of Quantum Electronics 55.6 (2018): 1-3. DOI: 10.1109/JQE.2018.2883709
[15] Yu, M. A., et al. “Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence.” Plasma Science and Technology 21.1 (2018): 015001. DOI: 10.1088/2058-6272/aade85
[16] Zhang, Haifeng, et al. “Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors.” Optical Materials Express 8.8 (2018): 2103-2113. DOI: 10.1364/ome.8.002103
[17] Ma, Yu, et al. “Properties of unidirectional absorption in one-dimensional plasma photonic crystals with ultra-wideband.” Applied Optics 57.28 (2018): 8119-8124. DOI: 10.1364/AO.57.008119
[18] Zhang, Haifeng, and Hao Zhang. “The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents.” Plasma Science and Technology 20.10 (2018): 105001. DOI: 10.1088/2058-6272/aacf87
[19] 杨靖, et al. “基于等离子体超材料的超宽带吸波体设计.” 激光与光电子学进展 9 (2018). DOI: 10.3788/LOP55.091602
[20] 马宇, et al. “一种波束扫描超材料天线的设计.” **激光与粒子束 30.10 (2018): 103206-1. DOI: 10.11884/HPLPB201830.180088
[21] 李文煜, et al. “一种波束扫描固态等离子体超表面的设计.” 激光技术 42.6 (2018): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018
[22] 张浩, et al. “一种基于等离子体超材料的吸波器设计.” 激光技术 42.5 (2018): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022
[23]张浩, et al. “一种新型可调谐宽带吸波器的设计.” 微波学报 34.6 (2018): 22-28. DOI: 10.14183/j.cnki.1005-6122.201806005