
Physica B 639 (2022) 414025

Available online 20 May 2022
0921-4526/© 2022 Elsevier B.V. All rights reserved.

Investigation on optical Tamm states based on graphene-dielectric 
cylindrical photonic crystals 

Jia-Tao Zhang a, Si-Si Rao a, Dan Zhang b, Hai-Feng Zhang a,* 

a College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China 
b College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China   

A R T I C L E  I N F O   

Keywords: 
Cylindrical photonic crystals 
Optical Tamm state 
Graphene 
Transfer matrix method 

A B S T R A C T   

In this paper, the principle of the transfer matrix method (TMM) is applied to derive the dispersion relation of 
electromagnetic wave propagation in cylindrical photonic crystals (CPCs), and we further deduce the conditional 
equations for exciting the optical Tamm state (OTS) in the one-dimensional (1D) CPCs based on the excitation 
conditions for OTS in 1D photonic crystals. Both H- and E-polarization are involved. After that, four CPCs are 
designed with graphene as the main defect layer to verify the correctness of the formula, and the effects of 
different defect layer structures, dielectric thickness, chemical potential, and phenomenological scattering rate 
on the dispersion curve are discussed, separately. In contrast, differences due to defect layer structure and 
dielectric thickness are more easily to be observed. The chemical potential of graphene dependence on the kρ-ω 
curves is more likely to be a kind of positive correlation. While phenomenological scattering rate has the weakest 
effect on the results.   

1. Introduction 

For a long time, people have been studying the propagation of 
electromagnetic waves in dielectric layered structures. Since the two 
pioneering works of Yablonovitch [1] and John [2] introduced the 
concept of photonic crystals (PCs) [3,4], such problems once again 
aroused great interest in the fields of optics and electromagnetics in 
1987. Since then, it led to a large number of PCs research projects in the 
past three and half decades. Nowadays, scholars in the fields of pho-
tonics [5], electronics [6], and materials physics [7] continue to take 
photonic crystals as a hot spot of research. 

A simple multilayer structure formed by alternating dielectrics 
periodically is called one-dimensional (1D) PCs, which are easier to 
prepare than 2D and 3D PCs. Moreover, because of the transfer matrix 
method (TMM) [8], we can explore the transmission characteristics of 
electromagnetic waves in the 1D PCs more conveniently. However, in 
comparison, the cylindrical photonic crystals (CPCs) [9–12] are more 
abundantly used in reality. By extending the TMM in the 1D PCs to the 
cylindrical coordinate system, the transmission properties of columnar 
waves in CPCs can be easily calculated [13–16], which makes the 
columnar periodic dielectric structure widely used in a variety of active 

and passive optoelectronic devices, including sensors [17], laser light 
sources [18], modulators [19], etc. In recent years, this structure has 
continued to be the focus of attention for many scholars. In 2017, Egypt 
researchers El-Naggar et al. [20] explored the electromagnetic wave 
propagation properties in the CPCs incorporating a single negative 
material and investigated the three gaps of zero-phase, zer-
o-permittivity, and zero-permeability. A wide-bandgap CPCs structure 
with polarization-independent characteristics at high azimuthal 
modulus was proposed by them. In the same year, Ukrainian scholars 
Averkov et al. [21] theoretically analyzed the dispersion properties of 
anisotropic cylindrical solid waveguide intrinsic waves without disper-
sion of the dielectric constant tensor components. The research on CPCs 
is bound to continue. 

In addition, the optical Tamm state (OTS) [22–25] is also one of the 
focuses of interest in this paper, which is a non-dissipative interface 
mode localized at the boundary of two different medium structures. 
Since Kavokin [26] first proposed the concept of OTS in 2005, it has 
caused extensive research by a large number of scholars and scientific 
research teams. Because of the requirements of local field enhancement, 
surface limitation, etc., OTS itself is widely used in the fields of nonlinear 
optics, light modulators, and sensors. Commonly, 1D PCs 
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heterostructures or metal-distributed Bragg mirrors are frequently used 
to observe OTS. And with the rise of 2D materials represented by gra-
phene and black phosphorus, there are more options for the excitation of 
OTS. Especially, graphene [27–29], with its numerous excellent opto-
electronic properties, when introduced as a defect, can make the exci-
tation of OTS independent of the polarization direction of the incident 
wave, in addition, even vertically incident electromagnetic waves can 
excite OTS. As early as 2010, Jiang et al. [30] have investigated the 
Tamm state localized at the interface between graphene superlattices 
and homogeneous graphene. In this paper, we also use graphene as the 
defect to excite OTS in the CPCs. It is worth mentioning that because of 
its excellent characteristics, graphene has received extensive attention 
not only in optics but also in materials science [31], chemistry [32], 
condensed matter physics [33], and other fields. 

In this paper, we derive the formulas of the conditions for excitation 
of OTS in the CPCs and propose several simple graphene doping struc-
tures to attempt the adjustment of dispersion curves by changing various 
parameters. The simulation results demonstrate that the effects of defect 
layer structure and dielectric thickness on the dispersion curve is more 
obvious, with a maximum difference of 0.0248(2πc/d) and 0.0171(2πc/ 
d) in angular frequency ω for the same ρ-directional component of the 
wave vector kρ. At the same time, regulating thickness of each dielectric 
layers in the CPCs structure can also cause the difference between the 
passband and forbidden band distribution. In contrast, the alteration 
caused by chemical potential μC and the phenomenological scattering 
rate of graphene τ are not significant. 

2. Structure design and simulation 

As shown in Fig. 1, the CPCs investigated in this paper are consisted 
of a graphene layer and dielectric layers, whose thicknesses can be 
denoted by dG, d0, dA, and dB, respectively, with an initial radius ρ-1. The 
graphene layer appears as the black part in the diagram, while A, B, and 
C are three dielectrics with different refractive indexes of nA, nB, and n0, 
where n0 = 1. In this structure, the graphene layer G and the dielectric 
(C)(AB)N are distributed from the center outward, where N represents 
the number of periods. 

We start with the two curl equations of Maxwell’s equations [13]. 

∇×E = − jωμH (1)  

∇×H = jωεE  (2) 

Firstly, take the example of H-polarization. Assume that the elec-
tromagnetic wave propagates along the ρ axis and its derivative to z can 
be omitted as 0. Expand Eqs. (1) and (2) in the cylindrical coordinate (ρ, 
φ, z), and the only non-zero components are Hz, Eφ, and Eρ, therefore, it 
can be obtained that 

1
ρ

∂Hz

∂φ
= jωεEρ (3a)  

∂Hz

∂ρ = − jωεEφ (3b)  

1
ρ

[
∂(ρEφ)

∂ρ −
∂Eρ

∂φ

]

= − jωμHz (3c) 

After eliminating the two terms Eφ and Eρ in the above formulas, the 
expression of Hz is rendered as 

ρ ∂
∂ρ

(

ρ ∂Hz

∂ρ

)

−
ρ2

ε
∂ε
∂ρ

∂Hz

∂ρ +
∂
∂ρ

∂Hz

∂φ
+ω2μερ2Hz = 0 (4) 

To derive the solution of Eq. (4), Hz can be expressed by using the 
method of separating variables [13,14] as 

Hz(ρ,φ)=V(ρ)Φ(φ)= [AJm(kρ)+BYm(kρ)]ejmφ (5)  

where Jm and Ym are Bessel function and Neumann function, respec-
tively, A, B are both constants and k = ω(με)1/2 is the wave number of 
the dielectric, m is regarded as the azimuthal mode number, which could 
be an integer. After that, Eq. (3b) leads to 

Eφ(ρ,φ)=U(ρ)Φ(φ)= jp
[
AJ ′

m(kρ)+BY
′

m(kρ)
]
ejωφ (6)  

where p=(μ/ε)1/2. For E-polarization, the only difference is that the p is 
changed to p=(ε/μ)1/2. 

Next, we divide the field into the superposition of two waves prop-
agating in the opposite direction, which can be expressed by two Hankel 
functions [13,14]. For H-polarization, the converging and diverging 
cylindrical wave components of the magnetic and electric field have the 
following forms 

Hz
+ =AH(2)

m (kρ)ejmφ (7)  

Eφ
+ = jpAH(2)

m

′

(kρ)ejmφ (8)  

Eφ
+ = jpAH(2)

m

′

(kρ)ejmφ (9)  

Eφ
− = jpBH(1)

m

′

(kρ)ejmφ (10) 

The total fields of Hz and Eφ are 

Hz =Hz
+ + Hz

− (11)  

Eφ =Eφ
+ + Eφ

− = jpC(2)
m Hz

+ + jpC(1)
m Hz

− (12)  

where 

C(1,2)
ml =H(1,2)

m

′

(klρ)
/

H(1,2)
m (klρ) (13)  

l indicates a certain layer of dielectric. 
Then, derive the propagation of cylindrical waves in the same layer 

of dielectric, as for diverging cylindrical wave, according to Eq. (7), it 
can be expressed as 

Hz
+(ρ)= H(2)

m (kρ)
H(2)

m (kρ0)
AH(2)

m (kρ0)e
jmφ =

H(2)
m (kρ)

H(2)
m (kρ0)

Hz
+(ρ0) (14a) 

In the same way, the form of the convergent wave is 
Fig. 1. The model diagram of CPCs with graphene as a defect layer, (a) Top 
view of the model, (b) Stereogram of the model, and (c) Sectional view of 
the model. 
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Hz
− (ρ)= H(1)

m (kρ)
H(1)

m (kρ0)
BH(1)

m (kρ0)e
jmφ =

H(1)
m (kρ)

H(1)
m (kρ0)

Hz
− (ρ0) (14b) 

If a matrix P is defined to connect the magnetic field components at 
different positions in the same layer of dielectric, then Eq. (14a) and Eq. 
(14b) can be associated by P as 
(

Hz
+(ρ)

Hz
− (ρ)

)

=P
(

Hz
+(ρ0)

Hz
− (ρ0)

)

(15)  

where 

P=

⎛

⎜
⎜
⎜
⎜
⎝

H(2)
m (kρ)

H(2)
m (kρ0)

0

0
H(1)

m (kρ)
H(1)

m (kρ0)

⎞

⎟
⎟
⎟
⎟
⎠

(16) 

After this, when the cylindrical waves are transmitted to the interface 
of two dielectrics, the tangential components of the electric and mag-
netic fields (Hz, Eφ) can be derived from Hz+ and Hz- through the matrix 
D. 
(

Hz
Eφ

)

=D
(

Hz
+

Hz
−

)

(17)  

where 

D=

(
1 1
jpC(2)

m jpC(1)
m

)

(18) 

According to the boundary conditions, it can be known that the 
interface between the two dielectrics should meet 

D1

(
H+

z1

H−
z1

)

=D2

(
H+

z2

H−
z2

)

(19)  

where 1, 2 refers to two different dielectrics. And for E-polarization, 
replacing j with -j. Obviously, the above formula can also be written as 

(
H+

z2

H−
z2

)

=D2
− 1D1

(
H+

z1

H−
z1

)

= D21

(
H+

z1

H−
z1

)

=

(
d11 d12
d21 d22

)(H+
z1

H−
z1

)

(20) 

Similarly, define the matrix 

D12 =D− 1
1 D2 =

(
d

′

11 d
′

12

d′

21 d′

22

)

(21) 

Now, let a layer of dielectric 1 and a layer of dielectric 2 be a period, 
then the electromagnetic wave components inside and outside a period 
can be expressed by the above matrix as 
(

H+
z2(ρ2)

H−
z1(ρ2)

)

=D12P2D21P1

(
H+

z2(ρ0)

H−
z1(ρ0)

)

(22) 

By extending the period of the dielectric to the internal and external 
interface of the Nth period, a general conclusion can be obtained as [13]. 

(
H+

z2(ρN+1)

H−
z1(ρN+1)

)

=D12P2D21P1

(
H+

z2(ρN)

H−
z1(ρN)

)

(23)  

where 

d11 = − jε2

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ1H(2)
m (k2ρ1)H

(1)
m (k2ρ1)

[
p2C(1)

m2 − p1C(2)
m1

]
(24a)  

d12 = − jε2

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ1H(2)
m (k2ρ1)H

(1)
m (k2ρ1)

[
p2C(1)

m2 − p1C(1)
m1

]
(24b)  

d21 = − jε2

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ1H(2)
m (k2ρ1)H

(1)
m (k2ρ1)

[
p1C(2)

m1 − p2C(2)
m2

]
(24c)  

d22 = − jε2

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ1H(2)
m (k2ρ1)H

(1)
m (k2ρ1)

[
p1C(1)

m1 − p2C(2)
m2

]
(24d)  

d′

11 = − jε1

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ2H(2)
m (k1ρ2)H

(1)
m (k1ρ2)

[
p2C(1)

m2 − p1C(2)
m1

]
(25a)  

d
′

12 = − jε1

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ2H(2)
m (k1ρ2)H

(1)
m (k1ρ2)

[
p2C(1)

m2 − p1C(1)
m1

]
(25b)  

d
′

21 = − jε1

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ2H(2)
m (k1ρ2)H

(1)
m (k1ρ2)

[
p1C(2)

m1 − p2C(2)
m2

]
(25c)  

d′

22 = − jε1

̅̅̅̅̅̅ε0

μ0

√ π
4

Kρ2H(2)
m (k1ρ2)H

(1)
m (k1ρ2)

[
p1C(1)

m1 − p2C(2)
m2

]
(25d)  

and p1=(μ0/ε0ε1)1/2, p2=(μ0/ε0ε2)1/2, k1 = j(kφ2-ω2μ0ε0ε1)1/2, k2 = j 
(kφ2-ω2μ0ε0ε2)1/2, ε0, μ0 are the dielectric constant and permeability in 
a vacuum, and ε1, ε2 are the dielectric constants of the two dielectrics, 
respectively. The refractive index and dielectric constant of the dielec-
tric layers are approximately satisfied ni = εi

1/2. When defining M =
D12P2D21P1, after further calculation we can get the conclusion that  

and 
(

H+
z1(ρN+1)

H−
z1(ρN+1)

)

=M

(
H+

z1(ρN)

H−
z1(ρN)

)

(27) 

In addition, according to Bloch’s principle, when the initial radius 
ρ0 is relatively large, the transmission of cylindrical waves approxi-
mately satisfies the relationship that 
(

H+
z1(ρN+1)

H−
z1(ρN+1)

)

= ejkd

(
H+

z1(ρN)

H−
z1(ρN)

)

(28) 

Combining Eqs. (27) and (28) and gradually simplifying them yields 
the following result(see Appendix for detailed calculation procedure): 

M=D12P2D21P1 =

⎛

⎜
⎜
⎜
⎜
⎝

H(2)
m (k2ρ2)

H(2)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d′

11d11 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d′

12d21
H(2)

m (k2ρ2)

H(2)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

11d12 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

12d22

H(2)
m (k2ρ2)

H(2)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d′

21d11 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d′

22d21
H(2)

m (k2ρ2)

H(2)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

21d12 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

22d22

⎞

⎟
⎟
⎟
⎟
⎠

(26)   

J.-T. Zhang et al.                                                                                                                                                                                                                                



Physica B: Physics of Condensed Matter 639 (2022) 414025

4

ejkd + e− jkd =
H(2)

m (k2ρ2)

H(2)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d
′

11d11 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(2)
m (k1ρ1)

H(2)
m (k1ρ0)

d
′

12d21

+
H(2)

m (k2ρ2)

H(2)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

21d12 +
H(1)

m (k2ρ2)

H(1)
m (k2ρ1)

H(1)
m (k1ρ1)

H(1)
m (k1ρ0)

d′

22d22

(29) 

Obviously, the left side of Eq. (29) equals a typical Eulerian formula 
and the right side is equal to the trace of the matrix M, i.e. 

cos kd =
M(1, 1) + M(2, 2)

2
(30) 

Obviously, this conclusion is very consistent in form with that drawn 
in 1D PCs. 

Now, we take the graphene layer as the main defect layer and derive 
the conditions for it to excite OTS. Regarding the conductivity of gra-
phene, a clear calculation method has been given by the Kubo formula as 
[26]. 

σg = σinter
g + σintra

g (31)  

where the superscripts “inter” and “intra” indicate the conductivity 
interband and intraband, respectively, which can be written as 

σintra
g =

je2kBT
πћ2(ω + j/τ)

(
μC

kBT
+ 2 ln

(
e−

μC
kB T + 1

))

(32)  

σinter
g = j

e2

4πћ
ln
⃒
⃒
⃒
⃒
2μC − ћ(ω + j/τ)
2μC + ћ(ω + j/τ)

⃒
⃒
⃒
⃒ (33)  

where e is the electron charge, kB is the Boltzmann constant, T is the 
thermodynamic temperature, ω is the angular frequency of the cylin-
drical wave, τ is the phenomenological scattering rate, and μC is the 
chemical potential of the graphene, respectively. 

The effective permittivity of graphene has the form that [29]. 

εg = 1 + jσg
/

ωε0dG (34)  

when assuming that the external factors do not affect the electronic band 
structure of the graphene layer at all, where ε0 is the permittivity of 
vacuum and dG is defined as the thickness of graphene. 

With the above conclusions, the propagation characteristics of cy-
lindrical waves in the graphene layer can be drawn. Firstly, assume that 
ρ-1 = ρ0-dG is the radius of the inner boundary of graphene, and ρ0 is the 
outside one. From Eq. (18), the matrix of the graphene layer can be 
written as 

DGa =

(
1 1
jpGC(2)

m (kGρρa) jpGC(1)
m (kGρρa)

)

, (a= 0, 1) (35)  

and 

PG =

⎛

⎜
⎜
⎜
⎜
⎝

H(2)
m (kGρρ0)

H(2)
m (kGρρ− 1)

0

0
H(1)

m (kGρρ0)

H(1)
m (kGρρ− 1)

⎞

⎟
⎟
⎟
⎟
⎠

(36) 

For the air layer at ρ = ρ-1, there is 

D0 =

(
1 1
jp0C(2)

m (k0ρρ− 1) jp0C(1)
m (k0ρρ− 1)

)

(37)  

where the subscripts G and 0 represent the graphene layer and air, 
respectively, while the subscripts ρ represents the component of the 
wave vector k in the ρ-direction. Therefore, at the interface between the 
two adjacent media with the defect layer, the magnetic field components 
can be connected by the matrix DG, PG, and D0 as 

(
H+

z0(ρ− 1)

H−
z0(ρ− 1)

)

=D0
− 1DG

(
H+

zG(ρ− 1)

H−
zG(ρ− 1)

)

= D0
− 1DG− 1PG

− 1DG0
− 1
(

Hz(ρ0)

Eφ(ρ0)

)

= T
(

Hz(ρ0)

Eφ(ρ0)

)

(38) 

In addition, it is easy to be calculated by Eqs. (27) and (28) that 

X=

⎛

⎜
⎝

1
ejkd − M(1, 1)

M(1, 2)

⎞

⎟
⎠ (39)  

is one of the eigenvectors of the two equations. To excite OTS [24], the 
electromagnetic wave needs to be evanescent in the ρ-direction, so the 
wave vector k in the ρ-direction in the air should be imaginary, namely 
k0ρ = j[kφ

2-(ω/c)2]1/2 and it needs to be attenuated in the ρ-direction, so, 
the magnetic field in the air inside the defect layer can only be in the 
following form 

H(ρ,φ)=H−
ρ<ρ− 1

e

(∫
jkφρdφ− ik0ρρ

)

(40)  

the component H0ρ
+ along the ρ+ direction is equal to 0. Substituting Eq. 

(39), Eq. (40) into Eq. (38), the condition for exciting the OTS is to 
satisfy 

T(1, 1)+T(1, 2)X(2)= 0 (41) 

In addition to the above formula, it also needs to meet that the 
imaginary part of k is above 0, and the dispersion curve is below ω/k0 =

c. 
The difference between the H- and E-polarization is only in the form 

of some elements in the matrix P and D, and the other calculation pro-
cesses are completely the same. 

Fig. 2. Dispersion curve of excited OTS under G-(AB)N structure. The white 
and black regions represent the forbidden and passbands of the periodic 
structure, respectively, while the black dashed line fulfills the equation ω/k0 =
c. When the OTS is excited, the light blue solid line corresponds to the rela-
tionship between the angular frequency ω of the input electromagnetic wave 
and the ρ-directional component of the wave vector k. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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3. Analysis and discussion 

As shown in Fig. 1, the initial parameters are: d = 30.5 μm, dA =

0.24d, dB = 0.76d, dG = 1.1148 × 10− 5d, ρ-1 = 0.1d, the azimuthal mode 
number m = 0. The refractive index of A and B are described by nA and 
nB, which are 2.96 and 1.778. T = 300 K, the chemical potential μC of 
graphene equals 0.3 eV, phenomenological scattering rate τ = 10− 13 s 
[31]. The thickness d0 of the C layer is set to be 50 times the wavelength 
of the incident light in a vacuum λ0 and the refractive index n0 = 1. In 
this paper, this structure is denoted as G-(AB)N. Since the excitation of 
the Tamm state is independent of the period number N of the structure, 
for convenience, N is fixed to 10. The dispersion curve obtained ac-
cording to the formula derived above is exhibited in Fig. 2. Where the 
black part is the passband of the periodic structure, while the white part 
represents the forbidden band, and the black dotted line satisfies 
equation ω/k0 = c, the dispersion curve needs to be below it. The light 
blue curve in Fig. 2 is the corresponding relationship between the 
ρ-direction component of the wave vector k in the cylindrical coordinate 
system and the angular frequency ω of the incident electromagnetic 
wave when the OTS is excited. 

Comparing the passband distribution of the 1D planar PCs with the 

same parameters, it is not difficult to find in Fig. 2 that when the initial 
radius ρ0 is large enough, the dispersion of the CPCs is basically the same 
as that under the 1D condition, which can also, to a certain degree, prove 
the correctness of the formula derivation in the second part. Obviously, 
there is a positive correlation between kz and ω. 

Next, as illustrated in Fig. 3(a)-(c), substitute GABG, GAG, GAGAG 
for the G layer in Fig. 1, keeping the initial radius ρ-1 = 0.1d and all other 
parameters unchanged. Since the periodic parts of the four structures are 
thoroughly identical, i.e., they have the same passband and forbidden 
band distributions, which means that we can represent the resultant 
curves of the four structures in a single Fig. 3(d). From Fig. 3(d), it can be 
observed that the trends of the dispersion curves are very similar for 
both G-(AB)N and GABG-(AB)N structures, but when kρ is the same, the ω 
corresponding to the excitation OTS of the GABG-(AB)N structure is 
generally larger than that of G-(AB)N by 0.0039 (2πc/d) on average. 
With kρ between 1.714 (π/d) and 2.267 (π/d), the GAGAG-(AB)N exci-
tation OTS has the largest ω of the four structures, while the GAG-(AB)N 

structure has a higher value when k increase to 2.267 (π/d). The curve of 
GAGAG-(AB)N intersects GAG-(AB)N and GABG-(AB)N at 0.9362 (2πc/d) 
and 1.0338 (2πc/d) for kρ equal to 2.267 (π/d) and 2.940 (π/d), 
respectively. 

Fig. 3. Dispersion curves of excited OTS under different structures: (a) GABG-(AB)N, (b) GAG-(AB)N, (c) GAGAG-(AB)N, and (d) all the curves. The white and black 
regions represent the forbidden and passbands of the periodic structure, respectively, while the black dashed line fulfills the equation ω/k0 = c. The colored curves in 
all figures represent the relationship between the angular frequency ω of the input electromagnetic wave and the ρ-directional component of the wave vector k under 
the respective structures when the OTS is excited. 
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Fig. 4 reveals the distribution of the electric field intensity in the 
ρ-direction of an electromagnetic wave incident at an angular frequency 
ω = 0.94 (2πc/d) in the G-(AB)N structure. Since the refractive index of 

dielectric C n0 equals 1, whose thickness is much larger than other di-
electrics and is an integer multiple of the wavelength of the incident 
wave in a vacuum, according to the principle of TMM, adding or deleting 

Fig. 4. Distribution of electric field intensity in ρ-direction in G-(AB)N structure when ω = 0.94 (2πc/d).  

Fig. 5. Dispersion curve of excited OTS under the G-(AB)N structure with different thickness of dielectric B: (a) dB = 0.76d, (b) dB = 0.66d and (c) dB = 0.59d. The 
white and black regions represent the forbidden and passbands of the periodic structure, respectively, while the black dashed line fulfills the equation ω/k0 = c. The 
colored curves in all figures represent the relationship between the angular frequency ω of the input electromagnetic wave and the ρ-directional component of the 
wave vector k under the respective structures when the OTS is excited. 
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the C layer has no effect on the distribution of electric field, therefore, 
layer C is omitted in Fig. 4 for a more visual representation. Moreover, 
rectangles are used here to replace the cross-section of the CPCs with a 
large radius. Because the thickness of graphene is four orders of 
magnitude smaller than the other two dielectrics, it is not easy to 
observe the graphene layer in Fig. 4 directly. But it is easy to conclude 
that the introduction of defects makes the electric field tend to be 
confined to the surface, and the attenuation to the side of the periodic 
structure is greater, which also provides evidence for the defect layer to 
excite OTS. 

In addition to adopting diverse defect layer structures, different 
curves can also be obtained by changing the thickness of the general 
dielectric. Keep other conditions unchanged, in the most basic G-(AB)N 

structure, the thickness of the dielectric B (dB) are severally taken as 
0.76d, 0.66d, and 0.59d, and the resulting image is shown in Fig. 5. On 
the one hand, the change in the thickness of dielectric B, at the same 
time, alters the periodic structure that causes the disparity in the dis-
tribution of the passband and the forbidden band. As dB decreases, the 
forbidden band of the dispersion curve in Fig. 5 becomes wider. When 
we take kρ = 2(π/d), the three different dB values correspond to the 

passband widths of 0.0322 (2πc/d) (0.8646 (2πc/d)-0.8968 (2πc/d)), 
0.0479 (2πc/d) (0.8441 (2πc/d)-0.8920 (2πc/d)) and 0.0557 (2πc/d) 
(0.8309 (2πc/d)-0.8866 (2πc/d)) respectively. But on the other hand, the 
dispersion curves themselves have very slight disparities both in trend 
and in value as indicated in the several graphs in Fig. 5. At kρ = 2(π/d), 
dB takes 0.76d, 0.66d, and 0.59d corresponding to ω as 0.8691 (2πc/d), 
0.8571 (2πc/d) and 0.8520 (2πc/d). 

Now, we use GABG as the defect layer, and its structure will change 
as dB takes different values. Same as Fig. 5, set dB to 0.76d, 0.66d, and 
0.59d, respectively, and the result is revealed in Fig. 6. At kρ = 2(π/d), dB 
takes 0.76d, 0.66d, and 0.59d corresponding to ω as 0.8730 (2πc/d), 
0.8633 (2πc/d) and 0.8588 (2πc/d). 

Evidently, in Figs. 5 and 6, the same dB demonstrates the same 
passband and forbidden band distribution, while in Fig. 6, even if the 
structure of the defective layer is changed while adjusting the dielectric 
thickness, the difference in the values between the three curves (when 
kρ = 2(π/d), dB takes the value from 0.76d to 0.59d, ω changes 0.0142 
(2πc/d)) is still very similar or even smaller than that shown in Fig. 5 (ω 
is changed 0.0171 (2πc/d)). 

Besides, the phenomenological scattering rate τ and chemical 

Fig. 6. The dispersion curves of excited OTS under the GABG-(AB)N structure with different thicknesses of dielectric B:(a) dB = 0.76d, (b) dB = 0.66d, and (c) dB =
0.59d. The white and black regions represent the forbidden and passbands of the periodic structure, respectively, while the black dashed line fulfills the equation 
ω/k0 = c. The colored curves in all figures represent the relationship between the angular frequency ω of the input electromagnetic wave and the ρ-directional 
component of the wave vector k under the respective structures when the OTS is excited. 
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potential μC of graphene will also influence the dispersion curve. 
The data in Fig. 7 displays the angular frequency ω of the incident 

cylindrical wave required to excite OTS when the chemical potential μC 
transmutes from 0.1 eV to 0.4 eV, where kz takes 2.5 (π/d), the 
phenomenological scattering rate τ are independently set to 0.01 ps, 
0.05 ps, 0.1 ps, and 0.5 ps In general, the increase in chemical potential 
and phenomenological scattering rate will make the same kz correspond 
to a larger ω. Among them, the change caused by the chemical potential 
is closer to a linear relationship. However, as the phenomenological 
scattering rate increases, the numerical change gradually becomes 
insignificant, especially when τ > 0.5 ps, the difference in ω is so trifling 
that these curves almost coincide. It can be concluded that by adjusting 
the data of μC and τ, the electromagnetic waves of various angular fre-
quencies can excite OTS, and a smaller phenomenological scattering rate 
means higher accuracy (the slope of the curve is smaller, and when τ =
0.01 ps, modulation range is 0.0008715 (2πc/d) (0.9461045 (2πc/d)- 
0.9469760 (2πc/d))), while if a larger modulation range is required, 
choose a larger τ (when τ = 0.1 ps, modulation range is 0.003177 (2πc/ 
d) (0.9468210 (2πc/d)-0.9499980 (2πc/d))). 

4. Conclusion 

In summary, we have further derived the conditions for excitation of 
OTS in the CPCs based on the existing theory, and both E-polarization 
and H-polarization are investigated. After that, we established CPCs 
with graphene as the main doped defect layer and periodic structures, 
which verify the correctness of the formula. The electric field intensity 
distribution in the structure can also indicate the existence of OTS. On 
this point, altering the structure of the defect layer will cause the 
dispersion curve to show distinct trends. The selection of different 
thicknesses of the dielectric layer affects the position of the passband 
and the forbidden band, but the dispersion curve itself moves slightly. 
The chemical potential of graphene dependence of the kρ-ω curve is 
more likely to be a kind of positive correlation. While phenomenological 
scattering rate has the weakest effect on the results. In general, the effect 
of these changes on the final results of the dispersion curves is relatively 
small, but it does allow for finer modulation of specific wave vectors and 
angular frequencies, which provides ideas and a theoretical basis for the 
design of sensors and other devices. 
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Eq. (42) can be reduced to the following form 

Fig. 7. Chemical potential and phenomenological scattering rate dependence 
of dispersion relations when kz = 2.5(π/d). 
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Because the initial radius is large enough, the values of the first and second types of Hankel functions are approximately equal in theory for the 
corresponding positions in the adjacent periods (when ρ = ρ0 or ρ = ρ2), that means 
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Eq. (29) can be obtained from the above calculation. 
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