List of papers for 2023

[1] Lv, You, et al. “Transition from electromagnetically induced transparency to electromagnetically induced absorption utilizing phase-change material vanadium dioxide based on circularly polarized waves.” Physica E: Low-dimensional Systems and Nanostructures 145 (2023): 115507. DOI: 10.1016/j.physe.2022.115507.

[2] Zhu, Di-Di, et al. “Broadband plasmon-induced transparency to a electromagnetically induced absorption conversion metastructure based on germanium.” Annalen der Physik 535.1 (2023): 2200425. DOI: 10.1002/andp.202200425. PDF download

[3] Zhu, Tian-Qi, et al. “The Absorption Properties of One‐Dimensional Spherical Photonic Crystals Based on Magnetized Ferrite Materials.” Annalen der Physik 535.2 (2023): 2200370. DOI: 10.1002/andp.202200370. PDF download

[4] Li, Yu-Peng, et al. “Tunable transmissive metastructure for precise or broadband polarization conversion modulation based on graphene.” Annalen der Physik 535.3 (2023): 2200491. DOI: 10.1002/andp.202200491. PDF download

[5] Sui, Jun-Yang, You-Ming Liu, and Hai-Feng Zhang. “A device of XOR logic gate and multiscale sensing based on layered topology.” Waves in Random and Complex Media (2023): 1-22. DOI: 10.1080/17455030.2023.2169389. PDF download

[6] Qiao, Zhen, et al. “Multifunctional and tunable ultra-broadband linear to circle polarization converter based on VO 2-integrated material.” JOSA B 40.2 (2023): 388-397. DOI: 10.1364/JOSAB.481286. PDF download

[7] Zhu, Tian-Qi, Jia-Tao Zhang, and Hai-Feng Zhang. “Investigation of photonic band gap properties of one-dimensional magnetized plasma spherical photonic crystals.” Waves in Random and Complex Media (2023): 1-25. DOI: 10.1080/17455030.2023.2172232. PDF download

[8] Sui, Junyang, et al. “Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection.” Annalen der Physik 535.3 (2023): 2200509. DOI: 10.1002/andp.202200509. PDF download

[9] Wan, Bao-Fei, et al. “A variable refractive index sensor based on epsilon-near-zero spatial selection structure and its potential in biological detection.” New Journal of Physics 25.2 (2023): 023003. DOI: 10.1088/1367-2630/acb60b. PDF download

[10] Zhang, Yang, Dan Zhang, and Haifeng Zhang. “A functionality-switchable device based on coherent perfect absorption with narrowband absorbing performance and sensing function.” Physica Scripta 98.3 (2023): 035502. DOI: 10.1088/1402-4896/acb672. PDF download

[11] Zeng, Li, Bing-Xiang Li, and Hai-Feng Zhang. “Nonreciprocal Electromagnetically Induced Unidirectional Absorption Based on the Quasi-Periodic Metastructure and Its Application for Permittivity Sensing.” IEEE Transactions on Instrumentation and Measurement 72 (2023): 1-12. DOI: 10.1109/TIM.2023.3239641. PDF download

[12] Liu, You-Ming, et al. “Realization of the nonreciprocal thermal radiation by the front and back sides of the Weyl semimetal-dielectric multilayer structures.” Journal of Quantitative Spectroscopy and Radiative Transfer 300 (2023): 108528. DOI: 10.1016/j.jqsrt.2023.108528. PDF download

[13] Sui, Junyang, et al. “A Janus logic gate with sensing function.” Annalen der Physik 535.4 (2023): 2200661. DOI: 10.1002/andp.202200661. PDF download

[14] Zhang, Wei, Zhen Qiao, and Hai‐feng Zhang. “An Ultra-Broadband Chirality Selective Metastructure Absorber using High Impedance Surface.” Annalen der Physik 535.5 (2023): 2300029. DOI: 10.1002/andp.202300029. PDF download

[15] Qiao, Zhen, et al. “Frequency reconfigurable and multifunctional metastructure regulated by nematic liquid crystal: broadband circular to linear polarization converter.” Annalen der Physik 535.5 (2023): 2300030. DOI: 10.1002/andp.202300030. PDF download

[16] Zhu, Tianqi, et al. “The absorption properties of one-dimensional spherical photonic crystals based on plasma material.” Physica Scripta 98.5 (2023): 055601. DOI: 10.1088/1402-4896/acc69c. PDF download

[17] Wu, You-Ran, et al. “A novel CPA-based layered photonic structure for multipurpose sensing applications.” Optics & Laser Technology 163 (2023): 109422. DOI: 10.1016/j.optlastec.2023.109422. PDF download

[18] Li, Qian-Qian, and Hai-Feng Zhang. “A high-gain circularly polarized antenna array based on a chiral metastructure.” IEEE Transactions on Antennas and Propagation 71.4 (2023): 3033-3041. DOI: 10.1109/TAP.2023.3241379. PDF download

[19] Pan, Hao, Bing-xiang Li, and Hai Feng Zhang. “Anapole-excited terahertz multifunctional spoof surface plasmon polariton directional Janus metastructures.” Physical Chemistry Chemical Physics 25.16 (2023): 11375-11386. DOI: 10.1039/D3CP00341H. PDF download

[20] Wang, Yi-Han, and Hai-Feng Zhang. “Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm.” Chinese Physics B 32.4 (2023): 044207. DOI: 10.1088/1674-1056/ac8929. PDF download

[21] Liu, You-Ming, et al. “Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals.” Chinese Physics B 32.4 (2023): 044203. DOI: 10.1088/1674-1056/ac921d. PDF download

[22] Zhu, Di-Di, et al. “Switching of electromagnetically induced transparency and absorption of graphene metastructure with the three resonators.” Waves in Random and Complex Media (2023): 1-25. DOI: 10.1080/17455030.2023.2182142. PDF download

[23] Dong, Rui-yang, et al. “Tunable and controllable multi-channel time-comb absorber based on continuous photonic time crystals.” Optics Letters 48.10 (2023): 2627-2630. DOI: 10.1364/OL.491783. PDF download

[24] Sui, Junyang, et al. “Multiple physical quantities Janus metastructure sensor based on PSHE.” Sensors 23.10 (2023): 4747. DOI: 10.3390/s23104747. PDF download

[25] Lv, You, et al. “Interconversion between dual-peak electromagnetically induced transparency and dual-peak electromagnetically induced absorption utilizing metasurface.” Physica B: Condensed Matter 663 (2023): 414981. DOI: 10.1016/j.physb.2023.414981. PDF download

[26] Liao, Si-yuan, et al. “Multifunctional device for circular to linear polarization conversion and absorption.” Annalen der Physik 535.7 (2023): 2300195. DOI: 10.1016/j.optmat.2024.115076. PDF download

[27] Wu, You Ran, et al. “Advanced optical terahertz fingerprint sensor based on coherent perfect absorption.” Physical Chemistry Chemical Physics 25.20 (2023): 14257-14265. DOI: 10.1039/D3CP00592E. PDF download

[28] Sui, Jun-Yang, et al. “High sensitivity multiscale and multitasking terahertz Janus sensor based on photonic spin Hall effect.” Applied Physics Letters 122.23 (2023). DOI: 10.1063/5.0153342. PDF download

[29] Lv, You, et al. “Polarization angle tailored multitasking metasturcure: electromagnetically induced transparency, electromagnetically induced absorption, linear-to-circular polarization conversion.” Waves in Random and Complex Media (2023): 1-29. DOI: 10.1080/17455030.2023.2222854. PDF download

[30] Ye, Haining, et al. “The broadband absorber based on plasma metastructure with spiral resonators.” Waves in Random and Complex Media (2023): 1-15. DOI: 10.1080/17455030.2023.2222848. PDF download

[31] Tang, Zhao, et al. “Optimized unidirectional and angle-insensitive ultra-broadband absorber based on layered graphene photonic structure.” Diamond and Related Materials 137 (2023): 110091. DOI: 10.1016/j.diamond.2023.110091. PDF download

[32] Xu, Jie, et al. “A multi-physical quantity sensor based on a layered photonic structure containing layered graphene hyperbolic metamaterials.” Physical Chemistry Chemical Physics 25.26 (2023): 17558-17570. DOI: 10.1039/D3CP01944F. PDF download

[33] Yang, Cheng, et al. “Second Harmonic Generation in 1D Nonlinear Plasma Photonic Crystals.” Annalen der Physik 535.9 (2023): 2300190. DOI: 10.1002/andp.202300190. PDF download

[34] Li, Qian-Qian, and Hai-Feng Zhang. “A high gain circularly polarized 2× 2 antenna array based on the spoof surface plasmon polariton and spoof localized surface plasmon.” Journal of Electromagnetic Waves and Applications 37.15 (2023): 1298-1316. DOI: 10.1080/09205071.2023.2234381. PDF download

[35] Dong, Rui-yang, et al. “A multifunctional layered photonic structure with NOR logical operation and multiscale detection based on the PT-symmetry breaking.” Waves in Random and Complex Media (2023): 1-18. DOI: 10.1080/17455030.2023.2234055. PDF download

[36] Zou, Jiahao, et al. “A terahertz Janus metastructure with a multi-function of different logic gates and multiple physical quantities detection.” Optics & Laser Technology 167 (2023): 109844. DOI: 10.1016/j.optlastec.2023.109844. PDF download

[37] Li, Si Ying, Zhao Tang, and Hai Feng Zhang. “Broadband plasmon-induced transparency to an anapole mode induced absorption conversion Janus metastructure by a waveguide structure in the terahertz region.” Physical Chemistry Chemical Physics 25.29 (2023): 19666-19683. DOI: 10.1039/D3CP02083E. PDF download

[38] Yin, Yu-jing, et al. “Transformation of twin-peak electromagnetically induced transparency to twin-peak electromagnetically induced absorption based on magnetic dipole and dielectric resonator.” Waves in Random and Complex Media (2023): 1-21. DOI: 10.1080/17455030.2023.2239374. PDF download

[39] Zhang, Ding-Yuan, et al. “The multiple physical quantity sensor based on cylindrical photonic crystals with XOR logic gates.” Physical Chemistry Chemical Physics 25.32 (2023): 21456-21467. DOI: 10.1039/D3CP02329J. PDF download

[40] Tang, Zhao, et al. “Tunable Janus absorptive frequency-selective reflector with octave frequency absorption.” Optics Letters 48.16 (2023): 4416-4419. DOI: 10.1364/OL.501274. PDF download

[41] Ye, Haining, et al. “The implementation of dual-band electromagnetically induced transparency metastructure based on micro-strip line structure and Calcium-magnesium-titanium ceramic.” Ceramics International 49.18 (2023): 29755-29767. DOI: 10.1016/j.ceramint.2023.06.227. PDF download

[42] Liao, Siyuan, et al. “A Liquid Crystal-Modulated Metastructure Sensor for Biosensing.” Sensors 23.16 (2023): 7122. DOI:10.3390/s23167122. PDF download

[43] Li, Si-Ying, and Hai-Feng Zhang. “An actively tunable terahertz metastructure absorber with tristate for refractive index sensing applications.” Physica B: Condensed Matter 667 (2023): 415194. DOI: 10.1016/j.physb.2023.415194. PDF download

[44] Siyuan Liao, et al. “Janus Device Based on Liquid Crystal Regulation with a Large Incidence Angle: Analogous Quantum Optical Effect and Absorption.” Annalen der Physik 535.11(2023): DOI: 10.1002/ANDP.202300160. PDF download

[45] Xu, Jie , et al. “Theoretical study of a Janus layered photonic structures based on improved particle swarm algorithm for detection of serum creatinine and glucose concentration.” (2023). DOI: 10.1080/17455030.2023.2259501. PDF download

[46] Wu, Fu-Pei et al. “A theoretical study based on coherent perfect absorption and polarization separation in one-dimensional magnetized plasma photonic crystals.” Physical chemistry chemical physics : PCCP (2023): n. pag. DOI: 10.1039/d3cp02216a. PDF download

[47] Xu, Jie et al. “Multi-physical quantity sensing based on magnetized plasma spherical photonic crystals with evanescent wave.” Journal of Physics D: Applied Physics 56 (2023): n. pag.  DOI: 10.1088/1361-6463/acfbe7. PDF download

[48] Wu, Fu-Pei et al. “Theoretical proposal of a sensor based on the comb-shaped coherent absorption realized by the magnetized plasma photonic crystals.” Current Applied Physics (2023): n. pag. DOI: 10.1016/j.cap.2023.09.006. PDF download

[49] HanQing Dong,ChengJing Gao,and HaiFeng Zhang. “Dielectric‐Based Electromagnetically Induced Transparency Metamaterial in the Microwave Band.” Annalen der Physik 535.11(2023):  DOI:10.1002/ANDP.202300192. PDF download

[50] Wan Bao-fei,Ye Hai-ning,and Zhang Hai-feng. “Independent-regulated double-edge Janus angular absorber for terahertz waves based on photonic edge band gaps and graphene wide-angle absorption.” Engineering Science and Technology, an International Journal 47.(2023):  DOI: 10.1016/J.JESTCH.2023.101549. PDF download

[51] Pan Hao,Li Yu-Peng,and Zhang Hai-Feng. “Design and optimization of circularly polarized dielectric resonator antenna array based on Al2O3 ceramic.” Alexandria Engineering Journal 82.(2023):154-166.  DOI:10.1016/J.AEJ.2023.09.063. PDF download

[52] Li, Yu-Peng et al. “Electromagnetic Resonance Modification Technique for Optimization of Polarization Conversion Performance in Metastructures.” IEEE Transactions on Antennas and Propagation (2023). DOI: 10.1109/TAP.2023.3302028. PDF download

[53] Wan Bao-Fei,Ye Hai-Ning,and Zhang Hai-Feng. “Multi-channel angular selective window based on the epsilon-near-zero features of YaBa2Cu3O7 material and photonic crystals ceramic structure of extremely small dispersion edge regions.” Ceramics International 49.22 (2023):34814-34825. DOI:10.1016/J.CERAMINT.2023.08.155. PDF download

[54] Li, Si-ying, et al. “An Ultra‐Wideband Janus Metastructure with Graphene for Detector Based on Anapole Mode in the Terahertz Region.” Annalen der Physik 535.12 (2023): 2300244.  DOI:  10.1002/andp.202300244. PDF download

[55] Zou, Jia-Hao, et al. “Arithmetic logic unit based on the metastructure with coherent absorption.” Optics Letters 48.21 (2023): 5699-5702. DOI: 10.1364/OL.505761. PDF download

[56] Wan, Bao-Fei, Hai-Ning Ye, and Hai-Feng Zhang. “Pattern-free Tunable Angular Propagation Characteristics Based On Edge States and its Potential in Sensing.” IEEE Transactions on Antennas and Propagation (2023). DOI: 10.1109/TAP.2023.3312583. PDF download

[57] Wan, Bao-Fei, Bing-Xiang Li, and Hai-Feng Zhang. “Theoretical study of dual-function sensor for analysis of blood composition and glucose concentration based on non-reciprocal analog of the electromagnetically induced absorption.” IEEE Transactions on Instrumentation and Measurement (2023). DOI: 10.1109/TIM.2023.3325859. PDF download

[58] Ru-Jia Cao, Zhen Qiao, You Lv, Hai-Feng Zhang,Switchable multifunctional meta-structure employing vanadium dioxide in the terahertz range,Physica B: Condensed Matter,Volume 671,2023,415454. DOI: 10.1016/j.physb.2023.415454. PDF download

[59] Zhang Jia-Tao,Rao Si-Si,and Zhang Hai-Feng. “Electromagnetic wave propagation in cylindrical photonic crystals with engineered disorder effects.” Optical Materials 146.(2023):  DOI: 10.1016/J.OPTMAT.2023.114610. PDF download

[60] Zhang Lei,Li Qian-Qian,and Zhang Hai-Feng. “A wideband and high-gain circularly polarized reconfigurable antenna array based on the solid-state plasma.” Engineering Science and Technology, an International Journal 48.(2023):  DOI: 10.1016/J.JESTCH.2023.101584. PDF download

[61] Jia-Tao Zhang, Yu Ma, and Hai-Feng Zhang. “Theoretical proposal of a multi-physical quantity measurable sensor with coexistence of absorption and transmission.” IEEE Sensors Journal (2023). DOI: 10.1109/JSEN.2023.3324062. PDF download

[62] Sui, Jun-Yang, et al. “Short-wave infrared Janus metastructure with multitasking of wide-range pressure detection and high-resolution biosensing based on photonic spin Hall effect.” IEEE Transactions on Instrumentation and Measurement (2023). DOI: 10.1109/TIM.2023.3338669. PDF download

[63] Ke Xia,Lei Zhang,and Haifeng Zhang. “Multifunction Applications of Filtering Dielectric Resonator Antenna Based on Liquid Crystal.” Sensors 24.1(2023): DOI: 10.3390/S24010115. PDF download

[64] Shi, Yuan-Kun, You-Ming Liu, and Hai-Feng Zhang. “The proposition of a dual-sensitivity laminated multi-metal dielectric stacks detecting structure based on the reflected Goos–Hänchen effect.” IEEE Sensors Journal (2023). DOI: 10.1109/JSEN.2023.3340171. PDF download

List of papers for 2022

[1] Gao, Cheng-Jing, Dan Zhang, and Hai-Feng Zhang. “Simultaneously achieving circular‐to‐linear polarization conversion and electromagnetically induced transparency by utilizing a metasurface.” Annalen der Physik 534.4 (2022): 2100578. DOI: 10.1002/andp.202100578

[2] Zhang, Hao, and Haifeng Zhang. “Thermally switchable and tunable metasurface with polarization independence based on VO2 phase transition.” Physica E: Low-dimensional Systems and Nanostructures 139 (2022): 115121. DOI: 10.1016/j.physe.2021.115121

[3] Gao, Cheng-Jing, et al. “Theoretical proposal of electromagnetically induced transparency with a transmissive polarization conversion based on metamaterials.” Physica Scripta 97.2 (2022): 025505. DOI: 10.1088/1402-4896/ac4c24

[4] Zhang, Xinlei, et al. “Linear-to-circular polarization converter with adjustable bandwidth realized by the graphene transmissive metasurface.” Plasmonics 17.3 (2022): 1079-1089. DOI: 10.1007/s11468-022-01598-8

[5] Zhou, Yang, et al. “The absolute photonic band gaps and all-angle negative refraction phenomenon of two-dimensional photonic crystals composed of multi-ring scatterers.” Physica B: Condensed Matter 632 (2022): 413698. DOI: 10.1016/j.physb.2022.413698

[6] Gao, Cheng-Jing, et al. “Polarization manipulation associated with electromagnetically induced transparency based on metamaterials.” Optics & Laser Technology 151 (2022): 108006. DOI: 10.1016/j.optlastec.2022.108006

[7] Zhang, Tao, Dan Zhang, and Hai-Feng Zhang. “Realization of double Fano resonances with a InSb-doped Fabry-Perot cavity.” Results in Physics 35 (2022): 105417. DOI: 10.1016/j.rinp.2022.105417

[8] Gao, Cheng-Jing, Yuan-Zhe Sun, and Hai-Feng Zhang. “Tunable dual-band linear-to-circular polarization conversion based on the electromagnetically induced transparency utilizing the graphene metamaterial.” Physica E: Low-dimensional Systems and Nanostructures 141 (2022): 115225. DOI: 10.1016/j.physe.2022.115225

[9] Guo, Zi‐Han, et al. “Temperature‐Controlled and Photoexcited Multitasking Janus Metasurface in the Terahertz Region.” Annalen der Physik 534.5 (2022): 2100499. DOI: 10.1002/andp.202100499

[10] Shi, Yuan-Kun, Bao-Fei Wan, and Hai-Feng Zhang. “Nonreciprocal Goos–Hänchen effect at the reflection of electromagnetic waves from the one-dimensional magnetized ferrite photonic crystals.” Journal of Optics 24.5 (2022): 055103. DOI: 10.1088/2040-8986/ac5f22

[11] Zhang, Yang, et al. “Multi-frequency coherent perfect absorption in the one-dimensional magnetized ferrite photonic structure.” Journal of Optics 24.5 (2022): 055104. DOI: 10.1088/2040-8986/ac6526

[12] Sun, Yuan‐Zhe, et al. “Circularly Polarized Manipulations with VO2‐Doped Dielectric Electromagnetically Induced Transparency and Absorption.” Annalen der Physik 534.6 (2022): 2200130. DOI: 10.1002/andp.202200130

[13] Gao, Cheng-Jing, et al. “Achieving polarization control by utilizing electromagnetically induced transparency based on metasurface.” Waves in Random and Complex Media (2022): 1-23. DOI: 10.1080/17455030.2022.2075955

[14] Dong, Hanqing, et al. “Investigating on the electromagnetically induced absorption metamaterial in the terahertz region realized by the multilayer structure.” Physica B: Condensed Matter 639 (2022): 413936. DOI: 10.1016/j.physb.2022.413936

[15] Zhang, Jia-Tao, et al. “Investigation on optical Tamm states based on graphene-dielectric cylindrical photonic crystals.” Physica B: Condensed Matter 639 (2022): 414025. DOI: 10.1016/j.physb.2022.414025

[16] Zhang, Jia-Tao, Si-Si Rao, and Hai-Feng Zhang. “Multiphysics sensor based on the nonreciprocal evanescent wave in the magnetized plasma cylindrical photonic crystals.” IEEE Sensors Journal 22.11 (2022): 10500-10507. DOI: 10.1109/JSEN.2022.3168578

[17] Zhang, Hao, et al. “Multitasking device with switchable and tailored functions of ultra-broadband absorption and polarization conversion.” Optics Express 30.13 (2022): 23341-23358. DOI: 10.1364/OE.465083

[18] Zeng, Li, and Hai-Feng Zhang. “Absorption improvement of the anapole metastructure for sensing applications.” IEEE Sensors Journal 22.12 (2022): 11644-11652. DOI: 10.1109/JSEN.2022.3169716

[19] Gao, ChengJing, and HaiFeng Zhang. “Switchable metasurface with electromagnetically induced transparency and absorption simultaneously realizing circular polarization‐insensitive circular‐to‐linear polarization conversion.” Annalen der Physik 534.7 (2022): 2200108. DOI: 10.1002/andp.202200108

[20] Ma, Yu, and Hai-Feng Zhang. “The Direction-Dependent Dual-Mechanism Sensor Based on Graphene Surface Plasmon Polariton and Composite Photonic Structure With Black Phosphorus.” IEEE Sensors Journal 22.13 (2022): 12769-12775. DOI: 10.1109/jsen.2022.3177738

[21] Qu, Jia, et al. “Multitasking device regulated by the gravity field: broadband anapole‐excited absorber and linear polarization converter.” Annalen der Physik 534.9 (2022): 2200175. DOI: 10.1002/andp.202200175

[22] Zhou, Yang, et al. “Band gap properties and self-collimation in a tenfold quasicrystal structure photonic crystals applying multicircular ring scatterers.” Physica Scripta 97.8 (2022): 085508. DOI: 10.1088/1402-4896/ac7eff

[23] Qu, Jia, Hao Pan, and Hai‐feng Zhang. “A Theoretical Proposal for an Ultrabroadband Metamaterial Absorber for the Circular Polarization Waves Based on Anapole Mode in the Near‐Infrared Region.” Annalen der Physik 534.9 (2022): 2200109. DOI: 10.1002/andp.202200109

[24] Zeng, Li, and Hai-Feng Zhang. “Theoretical proposal of a novel multitasking metasurface switched by solid-state plasma and gravity field.” Waves in Random and Complex Media (2022): 1-26. DOI: 10.1080/17455030.2022.2105980

[25] Zhang, Yang, Fu-Pei Wu, and Hai-Feng Zhang. “Theoretical model of a RI THz sensor realized by coherent perfect absorption with optical phase modulation.” IEEE Sensors Journal 22.15 (2022): 14842-14850. DOI: 10.1109/JSEN.2022.3182815

[26] Ma, Yu, and Haifeng Zhang. “Wide-angle energy steering and magnetic information detection-coding of stacked ferrite-based elements in the gradient magnetic domain.” Optics & Laser Technology 156 (2022): 108544. DOI: 10.1016/j.optlastec.2022.108544

[27] Sun, Yuanzhe, Dan Zhang, and Haifeng Zhang. “Tailoring dual-band electromagnetically induced transparency with polarization conversions in a dielectric-metal hybrid metastructure.” Optics Express 30.17 (2022): 30574-30591. DOI: 10.1364/oe.465895

[28] Xing, Feng‐Ge, Dan Zhang, and Hai‐Feng Zhang. “Polarization rotator between the linear polarization and the circular polarization based on the layered photonic structure.” Annalen der Physik 534.10 (2022): 2200270. DOI: 10.1002/andp.202200270

[29] Sui, Junyang, Dan Zhang, and Haifeng Zhang. “Logical OR operation and magnetic field sensing based on layered topology.” Journal of Physics D: Applied Physics 55.41 (2022): 415001. DOI: 10.1088/1361-6463/ac84e9

[30] Sui, Junyang, Dan Zhang, and Haifeng Zhang. “Logical OR operation and magnetic field sensing based on layered topology.” Journal of Physics D: Applied Physics 55.41 (2022): 415001. DOI: 10.1088/1361-6463/ac84e9

[31] Zhou, Yang, et al. “Self-collimation in the square lattice photonic crystals composed of multi-circular ring scatterers.” Physica B: Condensed Matter 645 (2022): 414240. DOI: 10.1016/j.physb.2022.414240

[32] Liu, You-Ming, et al. “Nonreciprocal omnidirectional band gap of one-dimensional magnetized ferrite photonic crystals with disorder.” Physica B: Condensed Matter 645 (2022): 414210. DOI: 10.1016/j.physb.2022.414210

[33] Liao, Siyuan, Junyang Sui, and Haifeng Zhang. “Switchable ultra-broadband absorption and polarization conversion metastructure controlled by light.” Optics Express 30.19 (2022): 34172-34187. DOI: 10.1364/oe.472336

[34] Li, Yupeng, Li Zeng, and Haifeng Zhang. “Technique for improving polarization conversion performance.” JOSA B 39.10 (2022): 2573-2581. DOI: 10.1364/josab.467682

[35] Li, Yupeng, et al. “Multifunctional and tunable metastructure based on VO 2 for polarization conversion and absorption.” Optics Express 30.19 (2022): 34586-34600. DOI: 10.1364/OE.470910

[36] Yao, Junqi, et al. “Ultra-broadband origami absorber with large angle stability in the THz region.” JOSA B 39.10 (2022): 2603-2609. DOI: 10.1364/JOSAB.468292

[37] Rao, Sisi, et al. “Theoretical investigation of the nonreciprocal bistable absorption of electromagnetic waves in one-dimensional photonic crystals combined with the nonlinear magnetized plasma defect layer.” Waves in Random and Complex Media (2022): 1-21. DOI: 10.1080/17455030.2022.2121445

[38] Shi, Yuan-Kun, et al. “A proposal of a laminated versatile sensor for refractive index and displacement with variable quality factor influenced by the graphene based on the reflected Goos–Hänchenn effect.” IEEE Sensors Journal 22.18 (2022): 17791-17798. DOI: 10.1109/JSEN.2022.3196829

[39] Zhang, Hao, and Haifeng Zhang. “Ultra-broadband coherent perfect absorption via elements with linear phase response.” Optics Express 30.21 (2022): 37350-37363. DOI: 10.1364/OE.471906

[40] Lv, You, et al. “Transition from electromagnetically induced transparency to electromagnetically induced absorption utilizing phase-change material vanadium dioxide based on circularly polarized waves.” Physica E: Low-dimensional Systems and Nanostructures 145 (2023): 115507. DOI: 10.1016/j.physe.2022.115507

[41] Wan, Baofei, Haining Ye, and Haifeng Zhang. “Ultra-Wideband Polarization Insensitive Angle Filter Based on ENZ Characteristics and Dynamic Antireflection Structures.” Photonics. Vol. 9. No. 11. MDPI, 2022. DOI: 10.3390/photonics9110854

[42] Sui, Jun-Yang, et al. “High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect.” Optics Letters 47.23 (2022): 6065-6068. DOI: 10.1364/OL.476048

[43] Rao, SiSi, et al. “Tunable polarization encoder capable of polarization conversion and separation based on a layered photonic structure.” IEEE Journal of Selected Topics in Quantum Electronics 29.1: Nonlinear Integrated Photonics (2022): 1-8. DOI: 10.1109/JSTQE.2022.3219112

[44] Wang, Peng-Xiang, Bao-Fei Wan, and Hai-Feng Zhang. “Theoretical study on the polarization-separated and nonreciprocal tailored electromagnetically induced absorption with layered photonic structure.” Results in Physics 43 (2022): 106102. DOI: 10.1016/j.rinp.2022.106102

[45] Zhang, Hao, Dan Zhang, and Hai-Feng Zhang. “Optically tunable and broadband terahertz coherent perfect absorption based on coupled toroidal dipole excitation.” Waves in Random and Complex Media (2022): 1-16. DOI: 10.1080/17455030.2022.2152904

List of papers for 2020

[1] Zhang, Hai-Feng, et al. “Design of a frequency reconfigurable broadband THz antenna based on the vanadium dioxide.” Plasmonics 15 (2020): 1035-1041. DOI: 10.1007/s11468-020-01129-3

[2] Li, Yu-Peng, et al. “A multifunctional polarization converter base on the solid-state plasma metasurface.” IEEE Journal of Quantum Electronics 56.2 (2020): 1-7. DOI: 10.1109/JQE.2020.2975019

[3] Zhang, Hai-Feng. “Investigation on the three-dimensional magnetized plasma photonic crystals with function dielectric under magneto-optical Faraday effect.” Optik 206 (2020): 163744. DOI:10.1016/j.ijleo.2019.163744

[4] Hu, Caixing, et al. “Investigation on temperature controlling multifunctional selector in superconducting photonic crystals based on Thue–Morse sequence.” JOSA B 37.6 (2020): 1829-1837. DOI: 10.1364/JOSAB.389349

[5] Zhang, Hai-Feng, et al. “A metamaterial absorber operating in the visible light band based on a cascade structure.” Plasmonics 15 (2020): 1755-1766. DOI: 10.1007/s11468-020-01190-y

[6] Guo, Sijia, Caixing Hu, and Haifeng Zhang. “Analysis of the features of a multifunctional device based on the regulation of the magnetic field in one-dimensional photonic crystals containing only plasma with a novel quasi-periodic structure.” JOSA B 37.7 (2020): 1996-2005. DOI: 10.1364/JOSAB.392047

[7] Mao, Mingyu, et al. “Goos–Hänchen shift produced by a one-dimensional photonic crystal doped with InSb.” JOSA B 37.7 (2020): 2095-2103. DOI: 10.1364/JOSAB.393392

[8] Guo, Si-Jia, Cai-Xing Hu, and Hai-Feng Zhang. “Design of a one-way multichannel and wide-angle absorber based on the one-dimensional superconductor photonic crystals with the cascaded quasi-period structure.” Physica C: Superconductivity and its applications 575 (2020): 1353668. DOI: 10.1016/j.physc.2020.1353668 

[9] Ma, Yu, and Haifeng Zhang. “The electromagnetic wave modulation based on single-frequency reflection in absorption with angle stability of hyperbolic metamaterials.” Journal of Optics 22.9 (2020): 095103. DOI: 10.1088/2040-8986/aba586

[10] Guo, Sijia et al. “Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence.” Journal of The Optical Society of America B-optical Physics 37 (2020): 2678-2687. DOI: 10.1364/JOSAB.399048

[11] Guo, Si-Jia, Cai-**ng Hu, and Hai-Feng Zhang. “A reconfigurable device based on the one-dimensional magnetized plasma photonic crystals nested with the Pell and Thue–Morse sequences.” Optical and Quantum Electronics 52 (2020): 1-18. DOI: 10.1007/s11082-020-02505-3

[12] Liu, Guo-Biao, and Haifeng Zhang. “A multifrequency electromagnetic modulator based on the solid-state plasma metamaterial.” IEEE Transactions on Plasma Science 48.9 (2020): 3246-3252. DOI: 10.1109/TPS.2020.3013704

[13] Wan, Bao-Fei, et al. “A theoretical proposal for a refractive index and angle sensor based on one-dimensional photonic crystals.” IEEE Sensors Journal 21.1 (2020): 331-338. DOI: 10.1109/JSEN.2020.3013289

[14] Li, Fenying, et al. “A theoretical proposal for the tunable electromagnetically induced transparency with superior properties based on the solid-state plasma.” Journal of Optics 22.9 (2020): 095106. DOI: 10.1088/2040-8986/abac21

[15] Guo, Sijia, Caixing Hu, and Haifeng Zhang. “Ultra-wide unidirectional infrared absorber based on 1D gyromagnetic photonic crystals concatenated with general Fibonacci quasi-periodic structure in transverse magnetization.” Journal of Optics 22.10 (2020): 105101. DOI: 10.1088/2040-8986/abad09

[16] Wan, Baofei, et al. “Theoretical investigation on the properties of polarization selection and asymmetric absorption for the ITO nanowire material.” JOSA B 37.10 (2020): 3126-3135. DOI: 10.1364/JOSAB.401954

[17] Zhang, Tao, et al. “Effect of Goos Hänchen shift of the light transmitted through a mixture of the graphene hyperbolic metamaterial and 1D superconducting photonic crystals.” Optik 223 (2020): 165636. DOI: 10.1016/j.ijleo.2020.165636

[18] Liu, Guo-Biao, Haifeng Zhang, and Hai-Ming Li. “Electromagnetically induced transparency metamaterial with polarization independence and multi-transmission windows.” Applied Optics 59.30 (2020): 9568-9573. DOI: 10.1364/AO.404381

[19] Guo, Sijia, et al. “The wide-angle broadband absorption and polarization separation in the one-dimensional magnetized ferrite photonic crystals arranged by the Dodecanacci sequence under the transverse magnetization configuration.” Journal of Physics D: Applied Physics 54.1 (2020): 015004. DOI: 10.1088/1361-6463/abb976

[20] Xu, Yi, et al. “Tunable and asymmetric optical bistability of one-dimensional photonic crystals based on InSb and nonlinear materials.” Applied Optics 59.31 (2020): 9799-9806. DOI: 10.1364/ao.402911

[21] Li, Yupeng, et al. “Realizing ultra-bandwidth cross-polarization conversion by a double-layer metasurface.” JOSA B 37.12 (2020): 3572-3580. DOI: 10.1364/JOSAB.402479

[22] Zeng, Li, Hai-Feng Zhang, and Dan Zhang. “A tunable metamaterial-based linear-to-circular polarization converter regulated solid state plasma in S-band.” Journal of Optics 22.12 (2020): 125103. DOI: 10.1088/2040-8986/abc40d

[23] Zeng, Li, et al. “A solid state plasma multifunctional metamaterial and its application for energy absorbing and cross polarization conversion.” IEEE Access 8 (2020): 205646-205656. DOI: 10.1109/ACCESS.2020.3037648

[24] Wan, Bao-Fei, et al. “A theoretical proposal for a refractive index and angle sensor based on one-dimensional photonic crystals.” IEEE Sensors Journal 21.1 (2020): 331-338. DOI: 10.1109/JSEN.2020.3013289

[25] Ma, Yu, et al. “A Switchable Absorption–Transmission Window Modulator Based on 1-D Magnetized Plasma Photonic Crystals.” IEEE Transactions on Plasma Science 48.12 (2020): 4155-4162. DOI: 10.1109/TPS.2020.3035155

[26] Ma, Yu, et al. “Switchable multifunctional modulator realized by the stacked graphene-based hyperbolic metamaterial unit cells.” Optics Express 28.26 (2020): 39890-39903.. DOI: 10.1364/OE.412594

[27] Wan, Bao-Fei, et al. “A theoretical proposal for a refractive index and angle sensor based on one-dimensional photonic crystals.” IEEE Sensors Journal 21.1 (2020): 331-338. DOI: 10.1109/JSEN.2020.3013289

[28] Wan, Bao-Fei, et al. “Theoretical investigation of a sensor based on one-dimensional photonic crystals to measure four physical quantities.” IEEE Sensors Journal 21.3 (2020): 2846-2853. DOI: 10.1109/JSEN.2020.3027759

List of papers for 2021

[1] Hu, Cai-Xing, et al. “A wide-angle and ultra-wideband metamaterial absorber based on a cascaded graphite involute windmill blade structure.” Journal of Optics 23.2 (2021): 025101. DOI: 10.1088/2040-8986/abd2cd

[2] Wang, Pengxiang, et al. “Research on the performance of the spin Hall effect of light based on a magnetized plasma layered structure.” JOSA B 38.2 (2021): 562-569. DOI:  10.1364/JOSAB.408883

[3] Wang, Pengxiang, et al. “Research on the spin Hall effect of light for nonlinear multilayer dielectrics and its bistable and nonreciprocal features.” Journal of Physics D: Applied Physics 54.15 (2021): 155105. DOI: 10.1088/1361-6463/abd8bd

[4] Zhang, Tao, et al. “Analysis of tunable Faraday rotation angle produced by 1D photonic crystals doped with InSb in the terahertz regime.” Applied Optics 60.5 (2021): 1448-1455. DOI: 10.1364/AO.413083

[5] Pan, Hao, et al. “Broadband terahertz absorber with gradient ring resonators based on a discrete spiral topological distribution.” JOSA B 38.3 (2021): 850-857. DOI: 10.1364/JOSAB.415928

[6] Wang, Peng-Xiang, et al. “Theoretical research on enhancement and adjustment of Spin Hall effect of light based on InSb.” Optical and Quantum Electronics 53 (2021): 1-14. DOI:  10.1007/s11082-021-02777-3

[7] Zhang, Hao, et al. “Three-dimensional gravity tailored ultra-broadband absorber based on a high-impedance surface.” JOSA B 38.3 (2021): 866-875. DOI: 10.1364/JOSAB.414118

[8] Li, Fenying, et al. “Reconfigurable electromagnetically induced transparency metamaterial simultaneously coupled with the incident electric and magnetic fields.” JOSA B 38.3 (2021): 858-865. DOI: 10.1364/JOSAB.412823

[9] Wang, Pengxiang, et al. “No-reciprocity in the spin Hall effect based on multilayer magnetized plasma.” Applied Optics 60.7 (2021): 1834-1842. DOI: 10.1364/AO.410627

[10] Guo, Si-Jia, et al. “The asymmetric optical bistability based on the one-dimensional photonic crystals composed of the defect layers containing the magnetized ferrite and nonlinear Kerr dielectric under the transverse electric polarization.” Journal of Applied Physics 129.9 (2021). DOI: 10.1063/5.0041461

[11] Mao, Ming-Yu, et al. “Giant Goos-Häanchen Shift Generated by the One-Dimensional Photonic Crystals Doped With Black Phosphorus.” IEEE Journal of Quantum Electronics 57.2 (2021): 1-7. DOI: 10.1109/JQE.2021.3061416

[12] Wan, Bao-Fei, et al. “A space filter possessing polarization separation characteristics realized by 1-D magnetized plasma photonic crystals.” IEEE Transactions on Plasma Science 49.2 (2021): 703-710. DOI: 10.1109/TPS.2021.3052055

[13] Wang, Qian-Yu, et al. “Nonreciprocal absorption characteristics of one-dimensional cylindrical magnetized plasma photonic crystals.” Physica Scripta 96.6 (2021): 065501. DOI: 10.1088/1402-4896/abede4

[14] Zhang, Hao, et al. “An ultra-broadband metamaterial absorber tailored by solid-state plasma.” Physica B: Condensed Matter 612 (2021): 412734. DOI: 10.1016/j.physb.2020.412734

[15] Tian, Xing-Liang, et al. “A gravity field tailored metamaterial absorber containing liquid metal for polarization separation.” Physica B: Condensed Matter 614 (2021): 413030. DOI: 10.1016/j.physb.2021.413030 

[16] Wan, Baofei, Haifeng Zhang, and Pengxiang Wang. “Nonreciprocal absorber with a narrow band of angular polarization sensitive regions based on a quasi-periodic structure.” Optics Letters 46.8 (2021): 1934-1937. DOI: 10.1364/OL.419107

[17] Chen, Quanfang, et al. “Tunable electromagnetically induced transparency metamaterial based on solid-state plasma: from a narrow band to a broad one.” JOSA B 38.5 (2021): 1571-1578. DOI: 10.1364/JOSAB.422522

[18] Zhang, Xinlei, et al. “A tunable ultra-wideband cross-polarization conversion based on the band splicing technology.” Applied Physics B 127 (2021): 1-11. DOI: 10.1007/s00340-021-07622-9

[19] Kong, Xinru, et al. “Effect of Cross-Polarization in the Absorption of Metatmaterial Absorber.” Mapan 36.1 (2021): 109-114. DOI: 10.1007/s12647-021-00432-6

[20] Peng, Hong-Mei, et al. “Tunable omnidirectional band gap properties of 1D plasma annular periodic multilayer structure based on an improved Fibonacci topological structure.” Optical and Quantum Electronics 53 (2021): 1-15. DOI: 10.1007/s11082-021-02912-0

[21] Gao, Ziyang, et al. “Tunable Fano resonance in one-dimensional magnetized plasmon photonic crystals.” JOSA B 38.6 (2021): 1806-1813. DOI: 10.1364/JOSAB.416118

[22] Pan, Hao, and Haifeng Zhang. “Thermally tunable polarization-insensitive ultra-broadband terahertz metamaterial absorber based on the coupled toroidal dipole modes.” Optics Express 29.12 (2021): 18081-18094. DOI: 10.1364/OE.427554

[23] Zhao, Zhen-Hua, and Hai-Feng Zhang. “A wide-band circularly polarized antenna array using a sequential phase feed structure applied to 5G-band.” Journal of Electromagnetic Waves and Applications 35.16 (2021): 2141-2152. DOI: 10.1080/09205071.2021.1934571\

[24] Wang, Qianyu, et al. “Investigation on the nonreciprocal properties of one-dimensional cylindrical magnetized plasma photonic crystals.” JOSA A 38.6 (2021): 897-907. DOI:  10.1364/JOSAA.422124

[25] Hu, Cai-Xing, Si-Jia Guo, and Hai-Feng Zhang. “A theoretical proposal of photonic crystals with gradient superconducting thicknesses for sensing applications.” Journal of Applied Physics 129.22 (2021). DOI: 10.1063/5.0051273

[26] Ma, Yu, Mingyu Mao, and Haifeng Zhang. “Nonreciprocal absorption and omnidirectional band gap in the biaxial hyperbolic metamaterials with black phosphorus.” Journal of Physics D: Applied Physics 54.34 (2021): 345103. DOI: 10.1088/1361-6463/ac073f

[27] Wang, Qian-Yu, et al. “Study on the nonreciprocal absorption properties of cylindrical photonic crystals embedded in graphene cascaded by periodic and Rudin–Shapiro sequences at large incident angles.” Journal of Applied Physics 129.22 (2021). DOI:  10.1063/5.0049632

[28] Hu, Cai-Xing, Si-Jia Guo, and Hai-Feng Zhang. “A theoretical proposal of photonic crystals with gradient superconducting thicknesses for sensing applications.” Journal of Applied Physics 129.22 (2021). DOI :10.1063/5.0051273

[29] Ma, Yu, Mingyu Mao, and Haifeng Zhang. “Nonreciprocal absorption and omnidirectional band gap in the biaxial hyperbolic metamaterials with black phosphorus.” Journal of Physics D: Applied Physics 54.34 (2021): 345103. DOI : 10.1088/1361-6463/ac073f

[30] Wang, Qian-Yu, et al. “Study on the nonreciprocal absorption properties of cylindrical photonic crystals embedded in graphene cascaded by periodic and Rudin–Shapiro sequences at large incident angles.” Journal of Applied Physics 129.22 (2021). DOI : 10.1063/5.0049632

[31] Ya-Ting Xiang, et al. “A novel comb-like nonreciprocal evanescent wave filter based on the 1-D ternary magnetized plasma photonic crystals.” IEEE Transactions on Plasma Science 49.6 (2021): 1826-1833. DOI: 10.1109/TPS.2021.3080679

[32] Xu, Yi, et al. “Optically reconfigurable non-reciprocal bistable absorption based on one-dimensional photonic crystal of plasma and non-linear materials.” Applied Physics B 127.7 (2021): 101. DOI: 10.1007/s00340-021-07645-2

[33] Wang, Zhi-Wei, et al. “Study on the PBGs of a two-dimensional photonic crystal with multilayer rings composite structure and its slow light in W1 waveguide.” Physica Scripta 96.12 (2021): 125501. DOI: 10.1088/1402-4896/ac186c

[34] Gui, Di, et al. “A tunable and polariztion-insensitive absorber based on the gravity field: from an ultra-wideband absorption to a single frequency absorption.” Physica Scripta 96.12 (2021): 125504. DOI: 10.1088/1402-4896/ac12e7

[35] Zhao, Yan, et al. “A highly selective absorber based on Archimedes-spiral-shaped metasurfaces.” Journal of Optics 23.8 (2021): 085102. DOI: 10.1088/2040-8986/ac10cd

[36] Zeng, Li, et al. “Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.” Optics Express 29.18 (2021): 29228-29241. DOI: 10.1364/OE.440172

[37] Rao, Sisi, et al. “Optical nonreciprocal bistable absorption in a one-dimensional asymmetric layered structure composed of nonlinear plasmas and general-function photonic crystals.” Journal of Physics D: Applied Physics 54.45 (2021). DOI: 455205.10.1088/1361-6463/ac15d2 

[38] Ma, Yu, Pengxiang Wang, and Haifeng Zhang. “Investigation on a multiwindow spin Hall effect and its applications based on a periodic superconducting structure with evanescent waves.” JOSA B 38.10 (2021): 2799-2805. DOI: 10.1364/JOSAB.43150

[39] Peng, Hong-Mei, et al. “A sensor based on one-dimensional cylindrical photonic crystals and graphene elements with a higher quality factor and a wider measurement range.” IEEE Sensors Journal 21.18 (2021): 19938-19947. DOI: 10.1109/JSEN.2021.3092577.

[40] Xang, Ya-Ting, Bao-Fei Wan, and Hai-Feng Zhang. “Multiscale and multiple physical quantities sensor based on nonreciprocal evanescent wave in the one-dimensional photonic crystals.”IEEE Sensors Journal 21.18(2021): 19984-19992. DOI: 10.1109/JSEN.2021.3100403.

[41] Rao, Si-Si, Bao-Fei Wan, and Hai-Feng Zhang. “Optical Bistability of 1-D Photonic Crystals Containing of Nonlinear Plasma.” IEEE Transactions on Plasma Science 49.9 (2021): 2653-2660. DOI: 10.1109/TPS.2021.3099807. 

[42] Wan, Bao-Fei, et al. “A late-model optical biochemical sensor based on OTS for methane gas and glucose solution concentration detection.” IEEE Sensors Journal 21.19 (2021): 21465-21472. DOI: 10.1109/JSEN.2021.3103548

[43] Wang, Zhi-Wei, Ya-Ting **ang, and Hai-Feng Zhang. “Band gap of two-dimensional layered cylindrical photonic crystal slab and slow light of W1 waveguide.” Optical and Quantum Electronics 53 (2021): 1-21. DOI: 10.1007/s11082-021-03285-0

[44] Rao, Si-Si, Jia-Tao Zhang, and Hai-Feng Zhang. “A multifunctional and multiscale device of magnetic-controlled AND logical operation and detection based on the nonreciprocity of the magnetized InSb photonic structure.” Results in Physics 31 (2021): 105058. DOI: 10.1016/j.rinp.2021.105058

[45] Li, Fen-Ying, et al. “A tailored ultra-broadband electromagnetically induced transparency metamaterial based on graphene.” Physica Scripta 96.12 (2021): 125530. DOI: 10.1088/1402-4896/ac3a4b

[46] Li, Qian-Qian, et al. “A circularly polarized antenna array with sequential-phase feed network.” Journal of Electromagnetic Waves and Applications 36.9 (2022): 1244-1256. DOI: 10.1080/09205071.2021.2014363

[47] Ye, Hai-Ning, et al. “A tunable metasurface based on Vanadium dioxide for Broadband RCS reduction.” Waves in Random and Complex Media (2021): 1-12. DOI: 10.1080/17455030.2021.2011469

[48] Wu, Fupei, et al. “Coherent perfect absorption in the one-dimensional non-magnetized plasma photonic crystals.” Physica Scripta 96.12 (2021): 125868. DOI: 10.1088/1402-4896/ac3fd2

[49] Rao, Si-Si, et al. “Theoretical proposal of a multitasking sensor realized by the mechanism of nonreciprocal absorption evanescent wave in the magnetized ferrite photonic crystals.” IEEE Sensors Journal 21.24 (2021): 27405-27413. DOI: 10.1109/JSEN.2021.3126158.

[50] Wang, Peng-Xiang, et al. “Theoretical research on a late-model multistage refractive index sensor based on photonic spin Hall effect.” Waves in Random and Complex Media (2021): 1-15. DOI: 10.1080/17455030.2021.2012301

[51] Sun, Yuan-Zhe, et al. “Tunable polarization comb based on the electromagnetically induced transparency with hybrid metal-graphene metamaterial.” Physica Scripta 96.12 (2021): 125539. DOI: 10.1088/1402-4896/ac454b

[52] Gao, Cheng-Jing, Dan Zhang, and Hai-Feng Zhang. “Simultaneously achieving circular-to-linear polarization conversion and electromagnetically induced transparency by utilizing a metasurface.” Annalen der Physik 534.4 (2022): 2100578. DOI: 10.1002/andp.202100578

[53] Zhou, Ziwei, et al. “Tunable zero-phase delay of one-dimensional photonic crystals containing InSb material.” JOSA B 38.1 (2021): 114-122. DOI: 10.1364/JOSAB.404852

[54] Pan, Hao, et al. “Design, simulation, and analysis of an ultra-broadband polarization-insensitive terahertz metamaterial absorber.” JOSA B 38.1 (2021): 95-103. DOI: 10.1364/JOSAB.403841

[55] Pan, Hao, et al. “Design, simulation, and analysis of an ultra-broadband polarization-insensitive terahertz metamaterial absorber.” JOSA B 38.1 (2021): 95-103. DOI : 10.1364/JOSAB.403841

[56] Zhao, Zhen-Hua, et al. “A theoretical proposal for a plasma density sensor based on the dielectric substrate antenna with high dielectric constant.” Journal of Electromagnetic Waves and Applications 35.6 (2021): 739-753. DOI: 10.1080/09205071.2020.1860833.

[57] Liu, Hou-Bing, et al. “An ultra-wideband terahertz metamaterial absorber based on the fractal structure.” Plasmonics 16 (2021): 263-271. DOI: 10.1007/s11468-020-01288-3

[58] Wang, Zi-Long, et al. “A newfangled terahertz absorber tuned temper by temperature field doped by the liquid metal.” Plasmonics 16 (2021): 425-434. DOI: 10.1007/s11468-020-01296-3

List of papers for 2019

[1] Dao, Ri-na, et al. “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide.” Optik 180 (2019): 619-625. DOI: 10.1016/j.ijleo.2018.12.004 

[2] Zhang, Hao, et al. “Ultra-broadband multilayer absorber with the lumped resistors and solid-state plasma.” Results in Physics 12 (2019): 917-924. DOI: 10.1016/j.rinp.2018.12.05

[3] Zhang, Hai-Feng, et al. “Unidirectional absorption in a three-dimensional tunable absorber under oblique incidence.” Plasmonics 14 (2019): 985-991. DOI: 10.1007/s11468-018-0884-2

[4] Zhang, Hao, et al. “A band enhanced tunable ultra-broadband absorber based on loading the lumped resistors and cavity resonance.” Plasmonics 14 (2019): 755-762. DOI: 10.1007/s11468-018-0854-8

[5] Zeng, Li, et al. “A tunable ultra-broadband linear-to-circular polarization converter containing the graphene.” Optics Communications 436 (2019): 7-13. DOI: 10.1016/j.optcom.2018.11.079 

[6] Liu, Guo‐Biao, et al. “A dual‐band and wideband omnidirectional circularly polarized antenna based on VO2.” International Journal of RF and Microwave ComputerAided Engineering 29.3 (2019): e21676. DOI: 10.1002/mmce.21676

[7] Zhang, Hai-Feng, et al. “Investigation of unidirectional ultra-wideband absorption in the one-dimensional plasma photonic crystals with Thue-Morse sequence.” Physics of Plasmas 26.1 (2019). DOI: 10.1063/1.5083106

[8] Kong, **n-Ru, Ri-Na Dao, and Hai-Feng Zhang. “A tunable double-decker ultra-broadband THz absorber based on a phase change material.” Plasmonics 14 (2019): 1233-1241. DOI: 10.1007/s11468-019-00912-1

[9] Zhang, Hai-Feng, Yu Ma, and Hao Zhang. “A Design of the Beam-Adjustable Metasurface Based on the Plasma Metamaterial with the Dielectric Matching Layers.” Frequenz 73.3-4 (2019): 89-97. DOI: 10.1515/freq-2018-0166

[10] Zhang, Hai-Feng, **n-Ru Kong, and Guo-Biao Liu. “Investigation on the extraordinary mode in the 3D magnetized plasma photonic crystals containing the function dielectric with woodpile lattices.” Solid State Communications 292 (2019): 27-35. DOI: 10.1016/j.ssc.2019.01.018

[11] Zhang, Haifeng, et al. “Ultra-broadband infrared metasurface absorber: comment.” Optics Express 27.4 (2019): 5346-5350. DOI: 10.1364/OE.27.005346

[12] Zeng, Li, et al. “Comment on “Polarization-insensitive and thin stereometamaterial with broadband angular absorption for the oblique incidence”.” Results in Physics 12 (2019): 2055-2060. DOI: 10.1016/j.rinp.2019.02.057

[13] Zhang, Hai-Feng, et al. “A gravity tailored broadband metamaterial absorber containing liquid dielectrics.” IEEE Access 7 (2019): 25827-25835. DOI: 10.1109/ACCESS.2019.2900314

[14] 曾立, et al. “一款基于多物理场调控的超宽带线-圆极化转换器.” 物理学报 68.5 (2019): 54101-054101. DOI: 10.7498/aps.68.20181615

[15] 马宇等. “一种”风车”形单元平面反射阵列天线的设计.” 南京师大学报:自然科学版 42.2(2019):6. DOI: 10.3969/j.issn.1001-4616.2019.02.013

[16] Zeng, Li, et al. “A three-dimensional Linear-to-Circular polarization converter tailored by the gravity field.” Plasmonics 14 (2019): 1347-1355.DOI: 10.1007/s11468-019-00930-z

[17] Zeng, Li, et al. “Comment on Polarization-adjustable dual-band absorption in GHz-band metamaterial, based on the no-smoking symbol.” Journal of the Korean Physical Society 74 (2019): 563-567. DOI: 10.3938/jkps.74.563

[18] Liu, Guo‐Biao, et al. “A polarization reconfigurable omnidirectional antenna realized by the gravity field tailored.” International Journal of RF and Microwave Computer‐Aided Engineering 29.6 (2019): e21707. DOI: 10.1002/mmce.21707

[19] Zhang, Hai-Feng, Li Zeng, and Yu-Qing Chen. “The dispersion properties of three-dimensional woodpile magnetized plasma photonic crystals including function dielectric under magneto-optical Faraday effect.” Physics of Plasmas 26.3 (2019). DOI: 10.1063/1.5087434

[20] Hu, Caixing, Haifeng Zhang, and Guobiao Liu. “Analysis of unidirectional broadband absorption in one-dimensional superconductor photonic crystal with an asymmetric multiple-layered structure.” Applied optics 58.11 (2019): 2890-2897. DOI: 10.1364/AO.58.002890

[21] Kong, Xinru, et al. “Comment on “design of a quad-band wide-angle microwave metamaterial absorber”.” Journal of Electronic Materials 48 (2019): 4166-4169. DOI: 10.1007/s11664-019-07194-7

[22] Huang, Tong, et al. “A novel tailored coplanar waveguide circularly polarized antenna controlled by the gravity field.” International Journal of RF and Microwave Computer‐Aided Engineering 29.9 (2019): e21823. DOI: 10.1002/mmce.21823

[23] Zeng, Li, et al. “Broadband linear-to-circular polarization conversion realized by the solid state plasma metasurface.” Plasmonics 14 (2019): 1679-1685. DOI: 10.1007/s11468-019-00966-1

[24] Liu, Guo-Biao, et al. “A tunable wideband omnidirectional circularly polarized antenna regulated by the gravity field.” International Journal of RF and Microwave Computer‐Aided Engineering 29.10 (2019): e21891. DOI: 10.1002/mmce.21891

[25] Zhang, Hai-Feng, and Hao Zhang. “The extraordinary mode in the three-dimensional magnetized plasma photonic crystals with layer-by-layer lattices containing the function dielectric.” The European Physical Journal D 73 (2019): 1-9. DOI: 10.1140/epjd/e2019-90304-1.

[26] Ma, Yu, et al. “Study on the properties of unidirectional absorption and polarization splitting in one-dimensional plasma photonic crystals with ultra-wideband.” JOSA B 36.8 (2019): 2250-2259. DOI: 10.1364/JOSAB.36.002250

[27] Kong, **n-ru, Hai-feng Zhang, and Ri-na Dao. “A tunable ultra-broadband THz absorber based on a phase change material.” Journal of Electronic Materials 48 (2019): 7040-7047. DOI: 10.1007/s11664-019-07511-0

[28] Zhao, Zhen‐Hua, et al. “A strain sensor realized by a multilayer dielectric antenna.” International Journal of RF and Microwave Computer‐Aided Engineering 29.11 (2019): e21926. DOI: 10.1002/mmce.21926

[29] 道日娜, et al. “一种基于二氧化钒材料的可调谐吸波器设计.” 激光技术 43.4 (2019): 557-562. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.021

[30] Kong, **n-Ru, et al. “A tunable polarization insensitive ultra-broadband absorber based on the plasma metamaterial.” Optics Communications 453 (2019): 124435. DOI:10.1016/j.optcom.2019.124435

[31] Huang, Tong, et al. “A new adjustable frequency waveguide circularly polarized antenna based on the solid-state plasma.” Applied Physics A 125 (2019): 1-9. DOI: 10.1007/s00339-019-2965-2

[32] Kong, Xin-Ru, Hai-Feng Zhang, and Ri-Na Dao. “A switchable polarization-independent THz absorber using a phase change material.” Optical and Quantum Electronics 51 (2019): 1-12. DOI: 10.1007/s11082-019-2022-6

[33] Zhang, Hai-Feng, et al. “Tunable linear-to-circular polarization converter using the graphene transmissive metasurface.” IEEE Access 7 (2019): 158634-158642. DOI: 10.1109/ACCESS.2019.2950847

[34] Zhang, Hai-Feng, **ng-Cai Hu, and Yu Ma. “Wide-angle and ultra-wideband absorption in one-dimensional superconductor photonic crystals with quasi-periodic sequences.” IEEE Access 7 (2019): 164286-164293. DOI: 10.1109/ACCESS.2019.2952777

List of papers for 2017 and 2018

[1] Zhang, Hai-Feng. “Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.” Chinese Physics B 27.1 (2018): 014205. DOI: 10.1088/1674-1056/27/1/014205

[2] Zhang, Hai-Feng. “The band structures of three-dimensional nonlinear plasma photonic crystals.” AIP Advances 8.1 (2018). DOI: 10.1063/1.5007900

[3] Zhang, Hai-Feng. “Three-dimensional function photonic crystals.” Physica B: Condensed Matter 525 (2017): 104-113. DOI: 10.1016/j.physb.2017.09.008

[4] Zhang, Hai-Feng. “Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence.” AIP Advances 7.7 (2017). DOI: 10.1063/1.4992139

[5] Zhang, Hai-Feng, Hao Zhang, and Yu Ma. “The features of three-dimensional photonic crystals with the space-depended dielectric.” Optik 172 (2018): 449-455. DOI: 10.1016/j.ijleo.2018.07.052

[6] Zhang, Hai-Feng. “The properties of three-dimensional plasma photonic crystals with Kerr nonlinear dielectric constituents.” Solid State Communications 282 (2018): 9-16. DOI: 10.1016/j.ssc.2018.07.007

[7] Zhang, Hai-Feng. “The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure.” Physica C: Superconductivity and its Applications 550 (2018): 65-73. DOI: 10.1016/j.physc.2018.04.007

[8] Zhang, Hao, et al. Comment on “Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application”.” Progress In Electromagnetics Research Letters 78 (2018): 39-43. DOI: 10.2528/PIERL18052602

[9] Zhang, Hai Feng, and Hao Zhang. “The Dispersion Characteristics of the Three-Dimensional Function Photonic Crystals with Woodpile Lattices Composed of Plasma and Magnetized Plasma Elements.” Progress In Electromagnetics Research C 88 (2018): 163-178. DOI: 10.2528/PIERC18090302

[10] Zhang, Hai-Feng, et al. “A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators.” IEEE Photonics Journal 10.4 (2018): 1-10. DOI: 10.1109/JPHOT.2018.2854906

[11] Zhang, Hai-Feng, et al. “A polarization-insensitive broadband terahertz absorber with a multilayer structure.” Results in Physics 11 (2018): 1064-1074. DOI: 10.1016/j.rinp.2018.11.010 

[12] Zhang, Hao, et al. “Band enhanced ultra-broadband terahertz absorber based on a high-impedance surface and cavity resonance.” Applied Optics 57.31 (2018): 9208-9214. DOI: 10.1364/AO.57.009208

[13] Zeng, Li, et al. “Comment on Broadband ultrathin low-profile metamaterial microwave absorber”.” Applied Physics A 124 (2018): 1-5. DOI: 10.1007/s00339-018-2261-6

[14] Tian, Xing-Liang, et al. “Comment on “A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings”.” IEEE Journal of Quantum Electronics 55.6 (2018): 1-3. DOI: 10.1109/JQE.2018.2883709

[15] Yu, M. A., et al. “Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence.” Plasma Science and Technology 21.1 (2018): 015001. DOI: 10.1088/2058-6272/aade85

[16] Zhang, Haifeng, et al. “Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors.” Optical Materials Express 8.8 (2018): 2103-2113. DOI: 10.1364/ome.8.002103 

[17] Ma, Yu, et al. “Properties of unidirectional absorption in one-dimensional plasma photonic crystals with ultra-wideband.” Applied Optics 57.28 (2018): 8119-8124. DOI: 10.1364/AO.57.008119 

[18] Zhang, Haifeng, and Hao Zhang. “The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents.” Plasma Science and Technology 20.10 (2018): 105001. DOI: 10.1088/2058-6272/aacf87

[19] 杨靖, et al. “基于等离子体超材料的超宽带吸波体设计.” 激光与光电子学进展  9 (2018). DOI: 10.3788/LOP55.091602

[20] 马宇, et al. “一种波束扫描超材料天线的设计.” **激光与粒子束  30.10 (2018): 103206-1. DOI: 10.11884/HPLPB201830.180088

[21] 李文煜, et al. “一种波束扫描固态等离子体超表面的设计.” 激光技术 42.6 (2018): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018

[22] 张浩, et al. “一种基于等离子体超材料的吸波器设计.” 激光技术 42.5 (2018): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022

[23]张浩, et al. “一种新型可调谐宽带吸波器的设计.” 微波学报 34.6 (2018): 22-28. DOI: 10.14183/j.cnki.1005-6122.201806005

Introduction of the Mentor

Hai-Feng Zhang was born in Nanchang, Jiangxi Province. He obtained his doctorate degree in Communication and Information Systems from the School of Electronic and Information Engineering at Nanjing University of Aeronautics and Astronautics in December 2014. In December 2016, he joined the School of Electronic and Optical Engineering at Nanjing University of Posts and Telecommunications as a professor appointed by the President, where he is involved in teaching and research activities.

Email: hanlor@163.com & hanlor@njupt.edu.cn

Research Gate: www.researchgate.net/profile/Zhang-Feng-9/research

Over the years, he has led 7 projects including those funded by National Natural Science Foundation Youth Fund Project, China Doctoral Special Grant Project, China Postdoctoral Program, Jiangsu Postdoctoral Program, Key Laboratory Open Project of Ministry of Education of China Southern University, National Virtual Simulation Experimental Teaching Center of Information and Electronic Technology at Nanjing University of Post, as well as high-level Talent Introduction Project at Nanjing University of Post. Additionally, he has been a key member on various national science foundation projects and provincial level projects since 2011. He has published over 120 papers both domestically and internationally with more than 70 papers being published in SCI/EI retrieval journals as either first author or corresponding author. His SCI papers have an impact factor exceeding 3.0 with some reaching over 3.5; moreover his first-authored SCI/EI papers have been cited over 190 times. Academic papers have been published in Annals of Physics, Journal applied physics: D, IEEE Journal of Selected Topics in Quantum Electronics, Journal of the Optical Society of America B, IEEE Journal of Lightwave Technology, IEEE Photonics Journal, Physics of Plasma, IEEE Transactions on Plasma Science, IEEE Journal of Quantum Electronics, Journal of Applied Physics, Applied Physics Letter, and other internationally renowned publications. He is an active author of the AIP, the OSA, the IOP, the IEEE, and the Elsevier.